Role of non-invasive imaging in the evaluation of athlete's heart: differentiating physiological from pathological changes

Michael S. Emery, M.D., F.A.C.C.
Director, IU Health, Center for Cardiovascular Care in Athletics
Assistant Professor of Clinical Medicine, Indiana University School of Medicine
Adjunct Clinical Assistant Professor, Department of Kinesiology, School of Public Health-Bloomington
Co-Chair, ACC Sports and Exercise Cardiology Leadership Council
Indianapolis, Indiana, USA
The Athlete’s Heart

“...morphological and electrical remodeling which occurs to varying extents dependent upon the sporting discipline.”

22% Harvard University Athletes had echo evidence of physiologic, exercise-induced cardiac remodeling.

RWT = \((2 \times \text{PWT})/\text{LVEDd}\)
“Athlete’s Heart”: Sport-specific EICR

Characteristic Adaptations:
- Mild to moderate Eccentric LVH & RV dilation
- Biatrial enlargement
- Normal to slightly reduced resting LVEF
- Normal or enhanced early diastolic function
- Normal or enhanced LV twisting/untwisting
“Athlete’s Heart”: Sport-specific EICR

Characteristic Adaptations:
• Mild concentric LVH but no RV remodeling
• Normal to mildly enlarged LA size
• Normal to hyperdynamic resting LVEF
• Normal to slightly reduced early LV diastolic function
• Compensatory increase in Late LV diastolic function
“Athlete’s Heart”: Sport-specific EICR

Normal “Pre-training” Cardiac Structure and Function

Endurance Training

Strength Training

RV Dilation +/- Mild RVH
Eccentric LV Hypertrophy

RV No Δ
Concentric LV Hypertrophy

Common Causes of Sudden Cardiac Death in Young Athletes

Structural Cardiac Abnormalities
- Hypertrophic cardiomyopathy
- Arrhythmogenic right ventricular cardiomyopathy
- Congenital coronary artery anomalies
- Marfan syndrome
- Mitral valve prolapse/Aortic stenosis

Electrical Cardiac Abnormalities
- Wolff Parkinson White syndrome
- Congenital long QT syndrome
- Brugada syndrome
- Catecholaminergic polymorphic ventricular tachycardia

Acquired Cardiac Abnormalities
- Infection (myocarditis)
- Trauma (commotio cordis)
- Toxicity (illicit/performance enhancing drugs)
- Environment (hypo/hyperthermia)

Comparison of Causes of SCD in Athletes

CMP → Athlete’s Heart → “Grey Zone”
Impact of Ethnicity

Myocardial Thickening

Physiologic Concentric LVH

HCM
Hypertensive CMP
Non-compaction
Infiltrative CMP
Pelliccia. Progress in Cardiovascular Diseases. 2012

18% BA
4% WA
Myocardial Mechanics

Caselli. JASE 2015: 236-244

Afonso. BMJ 2012

<table>
<thead>
<tr>
<th></th>
<th>Between HCM and AT-LVH*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area (95% CI)</td>
</tr>
<tr>
<td>Septal wall thickness (mm)</td>
<td>1.000 (0.998 to 1.001)</td>
</tr>
<tr>
<td>LV posterior wall thickness (mm)</td>
<td>0.908 (0.843 to 0.972)</td>
</tr>
<tr>
<td>Indexed LA dimension (cm/m²)</td>
<td>0.921 (0.861 to 0.981)</td>
</tr>
<tr>
<td>LV fractional shortening (%)</td>
<td>0.714 (0.580 to 0.848)</td>
</tr>
<tr>
<td>ThDI</td>
<td>0.952 (0.909 to 0.995)</td>
</tr>
<tr>
<td>Tissue Doppler imaging:</td>
<td></td>
</tr>
<tr>
<td>S' wave (cm/s)</td>
<td>0.912 (0.897 to 0.937)</td>
</tr>
<tr>
<td>E' wave (cm/s)</td>
<td>0.995 (1.005 to 0.984)</td>
</tr>
<tr>
<td>A' wave (cm/s)</td>
<td>0.666 (0.796 to 0.535)</td>
</tr>
<tr>
<td>GLS-avg (%)</td>
<td>0.920 (0.862 to 0.978)</td>
</tr>
<tr>
<td>SDI</td>
<td>0.890 (0.818 to 0.961)</td>
</tr>
</tbody>
</table>
LVH Regression with Detraining

Eccentric LVH

\[\downarrow 15\% (1.9\text{mm})\]

Concentric LVH

Weiner J Am Coll Cardiol. 2012

Pelliccia. Circulation 2002
Value of cMRI

A

RV

LV

B

RV

LV

C

RV

LV

*
Respective contribution of cardiovascular exams

14 athletes (9%) with normal hearts on TTE
Physiological vs. Pathological

- Eccentric or concentric LVH without regional variability
- Asymmetrical or regional hypertrophy is abnormal
- Wall thickness > 15mm is pathological entire proven otherwise
- Abnormal diastolic parameters are helpful
- Quantifying functional capacity ($VO_{2\text{max}}$) can be useful
- Additive value of Cardiac MRI (especially with an abnormal ECG)
- Detraining may be required
Left Chamber Dilation

Physiologic
Eccentric LVH

Familial DCM
Idiopathic DCM
Toxic DCM
Valvular Heart Disease

Mean 55.5±4.3mm

14%
LV adaptations in World-Class Pro Cyclists

LVIDd >60mm (51%)

EF 40-52% (7%)

Chamber Enlargement Response to Detraining

Average ↓7% (4mm)

Pelliccia. Circulation 2002
Physiology vs. Pathology

- Eccentric LVH vs Dilated Cavity
- Concomitant RV & LA enlargement
- Normal to supranormal myocardial mechanics
- Exercise testing
 - Stress echo
 - CPET
- Absolute cutoffs especially with detraining less useful
Right Chamber Dilation

Physiologic RV Dilation

ARVC
RV Afterload States

RV 5.5cm
LV 4.5cm
RV Size in Athletes

28% had values greater than the proposed “major criteria” for ARVC

Table 2 RV functional parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean ± SD (range)</th>
<th>ASE normal value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV ε (%)</td>
<td>-27 ± 6 (-18 to -41)</td>
<td>-18 to -39</td>
</tr>
<tr>
<td>RV SRS' (sec⁻¹)</td>
<td>-1.53 ± 0.43 (-0.75 to -2.63)</td>
<td>-0.7 to -2.54</td>
</tr>
<tr>
<td>RV SRE' (sec⁻¹)</td>
<td>2.00 ± 0.61 (0.87 to 3.76)</td>
<td>NA</td>
</tr>
<tr>
<td>RV SRA' (sec⁻¹)</td>
<td>1.25 ± 0.56 (0.28 to 2.88)</td>
<td>NA</td>
</tr>
<tr>
<td>RV FAC (%)</td>
<td>47 ± 7 (35 to 61)</td>
<td>35 to 63</td>
</tr>
<tr>
<td>RV S' (cm/sec)</td>
<td>11 ± 1.3 (7 to 14)</td>
<td>>6</td>
</tr>
<tr>
<td>RV E' (cm/sec)</td>
<td>-10 ± 2.1 (-6 to -17)</td>
<td>NA</td>
</tr>
</tbody>
</table>

FAC, Fractional area change; NA, not available.

*Rudski et al.⁹
Physiological vs. Pathological

- Associated with LV remodeling (absolute dimensions not helpful)
- Normal to low normal function
- Normal to supranormal RV mechanics
- Exercise testing
 - Stress echo
 - CPET
- Not associated with functional or structural changes of ARVC
- cMRI can be helpful
Pathology

- Symptoms
- Family History
- ECG
- LVH Type/distribution
- Arrhythmias
- Peak VO2
- Stress EF
- Late Gado Enhancement
- Δdeconditioning
Thank You!
Michael S. Emery, MD, FACC
msemery@iu.edu